Stem Cell Transplantation for Primary Immunodeficiency Diseases (PID)

Paul Veys

Great Ormond Street Hospital
For Children, NHS Foundation Trust, and
UCL Institute of Child Health Molecular Immunology Unit
London, UK
SCT for PID

Background

SCID
γ def, ADA def
Choice?

Non-SCID
WAS, CGD
HLH: XIAP
Primary Immune Deficiency Diseases (PID)
(Autosomal recessive unless otherwise stated)

Severe combined immunodeficiency (SCID)
- Functional
 - T- B- NK-
 - ADA deficiency
 - Reticular dysgenesis
 - T- B- NK+
 - RAG deficiency
 - SCID with Artemis
 - T- B+ NK-
 - γ deficiency *(X linked)*
 - Jak 3 kinase deficiency
 - T- B+ NK+
 - IL7 Rα deficiency
 - ZAP70
- Other
- Unspecified

**WASP deficiency *(X linked)*
**CD40 ligand deficiency *(X linked)*
**XLP *(X linked)*

Haemophagocytic syndromes
- Immunodeficiency with partial albinism
- Familial HLH
- Griscelli disease
- Chediak-Higashi syndrome
- XIAP

Phagocytic Cell disorders
- Schwachman’s syndrome
- Granule deficiency
- LAD
- CGD *(X linked/AR)*
- Kostmann’s syndrome
- IFN-γ receptor deficiency
- Other

T cell immunodeficiency / SCID variants
- CD4 lymphopenia
- Zap 70 kinase deficiency
- MHC Class II deficiency
- PNP deficiency
- Omenn’s syndrome
- Severe DiGeorge complex (22q 11del)
- CID with skeletal dysplasia
- Cartilage hair hypoplasia
- Other

Autoimmune/Immune dysregulatory
- ALPS, IPEX
- Other
Worldwide Organisation of PID

- UK – NCG \((n=60) \)
- Europe – EBMT/ESID IEWP
- USA – PIDTC
- Worldwide – CIBMTR WPIE & ID
SCID
Clinical presentation of SCID

- 1:75 000 live births usually present by 3mo of age
- Early diagnosis crucial
- Severe and frequent common infections or opportunistic infections
- Diarrhoea, dermatitis, failure to thrive
- 50% may be engrafted with maternal T cells
- At risk of transfusion associated GVHD
- Avoid BCG, (rotavirus vaccine)
Biochemical defect in ADA deficiency

DNA

\[\text{d-adenosine} \]

\[\text{d-adenosine} \]

\[\text{d-ATP} \]

\[dCydK \]

\[\text{d-inosine} \]

\[\text{ADA} \]

Increase in d-ATP due to dCydK is toxic to lymphocyte function.

- 15-20% delayed onset/partial ADA deficiency, present 2-3 years of life.
- Non-Immunological abnormalities: skeletal dysplasia, costochondral abnormalities, neurological abnormalities, hepatic dysfunction, sensorineuronal deafness, behavioural/psychological abnormalities.
How I treat SCID - Choice?
MSD SCT for SCID X1

• First success 1968 (Gatti et al)
• No conditioning or GVHD prophylaxis required
• Since 1985 cure rate >80%, probably now >90%
• Usually only T cells become donor; myeloid and erythroid remain recipient
• < 50% have donor B cells, but only minority require supplementation with IVIG
Survival without a second procedure

Hassan et al EBMT 2013

p=0.0005
HLA-mismatched family donor for SCID

- First success 1983 (Reisner et al)
- T cell depletion required
 - $<1\times10^4$/kg CD3+ cells
- Survival 66% (Gennery 2010)
- B- SCID do worse than B+ SCID
- ADA deficiency and Reticular Dysgenesis poor outcome 29%
- Role of conditioning
 - Simple infusion 95% success < 3 months of age (Buckley 1999)
 - No conditioning - delayed T cell and lack of B cell engraftment
- Slow immune reconstitution
 - Allodepletion / Suicide gene insertion / αβ depletion
- T cell exhaustion
Unrelated Cord Blood SCT for SCID

• Rapid availability (8 days)
• Less GVHD
• Greater proliferative life span
• Slower engraftment
• Lack of virus specific T-cells / no boost
 – But rapid CD4 recovery without ATG \textit{(Chiesa 2011)}
• 16/20 (80\%) matched for 3-6/6 HLA antigens survived with B cell reconstitution
 \textit{(Slatter & Gennery 2006)}
Kinetics of Ig therapy discontinuation and overall survival in the 2 study groups.

Cell Source: T-CELL Recovery Following Cord Blood Transplant
CD3+/CD4+/CD8+ T cells @ 2 months after HSCT

LYMPHOCYTE COUNT (X 10⁹/L)

- CBT no seroth (n=28)
- CBT with seroth (n=7)
- Sibling no seroth (n=23)
CD4+ RECOVERY VIA PERIPHERAL EXPANSION

Median CD4+ T-cell / TRECs count after UCBT (n=17)

CD4+ T-CELL COUNT (X 10^9/L)

- **CD4+**
- **TRECS**

TRECS/10^6 CD3+ T-cells

- 1 month
- 2 months
- 3 months
- 6 months
- 12 months

PERIPHERAL EXPANSION

THYMIC RECOVERY
Spectratype @ 1 and 2 months post CBT (pt LS)
Gamma-capture: T-cell response to Adenovirus @ 2 months

JB 7/10 mm cord rTALL/Bu Cy Mel/CyA,MMF - T cell responses to viral antigens at 2 months (feb09). SD/WQ
acute GvHD g II-IV

Log rank
none-early $p=0.002$
early- late $p= 0.003$
none-late $p< 0.001$

61% +/- 9%
43% +/- 9%
17% +/- 5%
Gennery et al.

SCID
How I treat SCID-X1

(Gaspar et al Blood 2013 in press)

90% DFS

> 80% survival
B cell function 20%

70% DFS

22 patients:
most clinical benefit
5 developed T-ALL
How I treat ADA-SCID

- Clinical benefit: 25/36 (69%)
- 67% DFS
- 86% DFS

Flowchart:

1. MSD/MFD available
 - +/− PEG-ADA
 - HSCT – no conditioning
 - In case of lack of access to PEG-ADA treatment
 - Enroll into gene therapy trial
 - OR
 - HSCT with conditioning from MUD/mMUD/haplo

2. MSD/MFD unavailable
 - MSD/MFD search
 - Enroll into gene therapy trial
 - Reinitiate PEG-ADA
 - Engraftment failure

3. Stabilise with PEG-ADA
 - Continue PEG-ADA
 - MUD

4. Lack of access to ERT or thymic function
 - *
Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening.

Probands
n=45

- Death before HSCT
 n=14
 31% mortality

- Progress to HSCT
 n=31

- Deaths after HSCT
 n=13
 41%

Overall mortality/survival: 27/45 (60%) (40%)

Siblings
n=55

- Death before HSCT
 n=1
 1.8% mortality

- Progress to HSCT/GT
 n=54

- Deaths after HSCT/GT
 n=3
 5.5%

Overall mortality/survival: 4/55 (7.2%) (92.8%)

Comparison of age at diagnosis and age at HSCT

<table>
<thead>
<tr>
<th></th>
<th>Proband</th>
<th>Sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at Diagnosis</td>
<td>124 Days</td>
<td>5 Days (43)</td>
</tr>
<tr>
<td>Mean Age at HSCT</td>
<td>216 Days</td>
<td>34 Days</td>
</tr>
</tbody>
</table>
Infections

<table>
<thead>
<tr>
<th>Type of infections</th>
<th>Proband</th>
<th>Sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norovirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAFLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinovirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

The bar chart shows the number of instances of various infections, categorized as Proband and Sibling. The highest number of instances is for Other.
Non-SCID
Non-SCID Immunodeficiency

- Requirement for conditioning
- Previously myeloablative conditioning
- Co-morbidities consider reduced intensity SCT
Non-SCID
Improvement in Outcome of Haematopoietic Cell Transplantation for T cell Immune Deficiency

Wiskott-Aldrich Syndrome (WAS)

- X-linked, 4 per million live births
- Triad of thrombocytopenia, eczema, progressive immunodeficiency
- Without SCT most succumb to Infection, bleeding, autoimmune disease or lymphoproliferative disease
- Thrombocytopenia may respond to splenectomy
- SCT survival MSD/UD/CBT/Haplo: 88%/71%/80%/52% (Filipovich 2001)
- Results better with myeloablative SCT < 5 yrs
- Aim for 100% donor chimerism lymphoid/myeloid lineages
Influence of the degree of donor cell engraftment on the reconstitution of lymphocyte counts and autoimmunity after HCT.

Chronic Granulomatous Disease (CGD)

- Defective NADPH oxidase phagocyte killing
- Despite septrin/itraconazole/IFN 2-5% annual mortality, with 25% deaths due to aspergillus
- MSD for CGD with one significant complication 85% survival (*Seger 2002*).
- SCT during active infection may be complicated by severe inflammation
- Recent success with MSD/MUD SCT – ATG/Alemtuzumab + submyeloablative Bu/Flu conditioning
Reduced Toxicity Conditioning in CGD
MFD vs MUD (Guengoer 2013)

MUD

- Fludarabine 180 mg/sqm
- Alemtuzumab 0.5* mg/kg
- Low dose/targeted Busulfan
- CsA
- MMF

MFD

- Fludarabine 180 mg/sqm
- Low dose/targeted Busulfan
- ATG* 7.5 m/kg
- CsA
- MMF
Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience.
Reduced Intensity Conditioning

<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>CHEMOTHERAPY</th>
<th>SEROTHERAPY</th>
<th>GVHD PROPHYLAXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Busulfan (iv) (AUC dosing)2</td>
<td>Campath 1H (TD 0.6-1mg/kg) OR ATG (TD 7.5-10mg/kg)</td>
<td>CyA or CyA + MMF or MTX (as 2nd agent)</td>
</tr>
<tr>
<td></td>
<td>Fludarabine 180 mg/m2</td>
<td>Campath 1H (TD 0.6-1mg/kg)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Fludarabine 150 mg/m2</td>
<td>Campath 1H (TD 0.6-1mg/kg)</td>
<td>CyA or CyA/MMF</td>
</tr>
<tr>
<td></td>
<td>Melphalan 140 mg/m2</td>
<td>Campath 1H (TD 0.6-1mg/kg)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Treosulphan 42 g/m2</td>
<td>None or Campath 1H (0.6-1mg/kg)</td>
<td>CyA or CyA/MMF</td>
</tr>
<tr>
<td></td>
<td>Fludarabine 150 mg/m2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2AUC dosing for iv Bu = 60+/- 5 mg*h/L. (see appendix for specific protocols for different donor sources and dosing)
- Avoid Melphalan 140mg/m2 < 1 year of age unless HLH
- Treosulphan 36g/m2 < 1 year of age (see appendix for specific protocols)
- If using ATG with protocols C or D – be aware of increased incidence of EBV-PTLD
- For these protocols if using matched UD or MFD – PBSCs are stem cell source of choice
- If using BM consider decrease in Campath 1H dose to 0.6mg/kg esp if condition requires full donor chimaerism as in WAS or MHC class II deficiency
Haemophagocytic Syndromes

• Familial Haemophagocytic Lymphohistiocytosis (FHL)
 – 1:50 000, present with fever, hepatosplenomegaly, pancytopenia, hypertriglyceridaemia, hypofibrinogenaemia, haemophagocytosis in bone marrow
 – Mutation in perforin/MUNC/syntaxin genes leads to uncontrolled activation T lymphocytes
 – Fatal without immunosuppresive therapy and SCT
 – Outcome MFD/MUD/Haplo/mMUD = 71%/70%/54%/54%
 • Improved with inactive disease
Haemophagocytic Syndromes

other genetic causes:

- Chediak-Higashi Syndrome (CHS) Accelerated
- Griscelli’s Syndrome (GS) RAB27a
- XLP1 (SAP deficiency)
- X-linked inhibitor of apoptosis protein (XIAP) [XLP2]
 - Inflammatory bowel disease, LPD, HLH
Good News!
History of SCT for HLH since 2000: Alem/Flu/Mel RIC Improves Patient Survival

<table>
<thead>
<tr>
<th>Reference</th>
<th>n</th>
<th>Prep</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henter et al, 2002</td>
<td>65</td>
<td>Ablative</td>
<td>55% 3 yr DFS</td>
</tr>
<tr>
<td>Horne et al, 2005</td>
<td>86</td>
<td>Ablative</td>
<td>64% 3 yr DFS</td>
</tr>
<tr>
<td>Ouachee-Chardin et al, 2006</td>
<td>48</td>
<td>Ablative</td>
<td>58.5%</td>
</tr>
<tr>
<td>Baker et al, 2008</td>
<td>91</td>
<td>Ablative</td>
<td>49% 5 yr DFS</td>
</tr>
<tr>
<td>Marsh et al, 2010</td>
<td>14</td>
<td>Ablative</td>
<td>43% 3 yr DFS</td>
</tr>
<tr>
<td>Cooper et al, 2006</td>
<td>12</td>
<td>Reduced-Intensity</td>
<td>75%</td>
</tr>
<tr>
<td>Cooper et al, 2008</td>
<td>25(-12)</td>
<td>Reduced-Intensity</td>
<td>84%</td>
</tr>
<tr>
<td>Marsh et al, 2010</td>
<td>26</td>
<td>Reduced-Intensity</td>
<td>92% 3 yr DFS</td>
</tr>
</tbody>
</table>
Kaplan-Meier 3-year survival curves for the MAC and RIC groups

2003-2009

n=26

n=14

n=5

n=6

p<0.01

MAC --- RIC

Survival Distribution Function

Time (Days Following HCT)

Donor and recipient chimerism within the RIC group.

Bad News!

"Would you please elaborate on 'then something bad happened'?"
HCT IN HLH: OUTCOME

32 PATIENTS

21 ALIVE (66%)

11 DEATHS (34%)

AML (BM)
SEPSIS (BM)
PARAFLU (BM)
PARAFLU (CORD)
CMV PNEUMONIA (CORD)
SEPSIS (BM)
MELPHALAN TOX (BM)
RSV/GvHD/PAH (CORD)
IPS (CORD)
IPS (PBSC)
PAH (CORD)

MORTALITY

PBSC 1/11 (9%)
BM 5/14 (36%)
CORD 5/7 (71%)
Allogeneic Hematopoietic Cell Transplantation for **XIAP Deficiency**: An International Survey Reveals Poor Outcomes. (7/19 surviving)

Blood. 2013 Feb 7;121(6):877-83.
Conditioning and HLH Activity

Survival Distribution Function

Follow Up (Days)

RIC, Remission
MAC, Remission
RIC, No Remission
MAC, No Remission

STRATA:
- Conditioning=MAC HLH_In_Remission=No
- Conditioning=MAC HLH_In_Remission=Remission
- Conditioning=RIC HLH_In_Remission=No
- Conditioning=RIC HLH_In_Remission=Remission
- Censored Conditioning=RIC HLH_In_Remission=Remission

p=0.03 (log-rank test)
Toxicities in MAC Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>VOD<sup>^</sup></th>
<th>Pulmonary Hemorrhage</th>
<th>Pneumonitis or ARDS<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>NR<sup>+</sup></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Not clinically, autopsy +</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>+ (related to fungal septic thrombosis of the pulmonary veins and pulmonary artery)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Toxicities in RIC Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>VOD(^\wedge)</th>
<th>Pulmonary Hemorrhage</th>
<th>Pneumonitis or ARDS(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Monoclonal Antibody-based Minimal Intensity Conditioning (MIC)

Straathof KC et al Lancet. 2009 Sep 12;374(9693):912-20.

<table>
<thead>
<tr>
<th>Day</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>Treatment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day - 8</td>
<td>fludarabine</td>
<td>anti-CD52</td>
<td></td>
</tr>
<tr>
<td>Day - 7</td>
<td>fludarabine 30mg/m²</td>
<td>cyclophosphamide 300mg/m²</td>
<td>anti-CD52</td>
</tr>
<tr>
<td>Day - 6</td>
<td>fludarabine</td>
<td>cyclophosphamide</td>
<td>anti-CD52</td>
</tr>
<tr>
<td>Day - 5</td>
<td>fludarabine</td>
<td>cyclophosphamide</td>
<td>anti-CD45</td>
</tr>
<tr>
<td>Day - 4</td>
<td>fludarabine</td>
<td>cyclophosphamide</td>
<td>anti-CD45</td>
</tr>
<tr>
<td>Day - 3</td>
<td></td>
<td></td>
<td>anti-CD45</td>
</tr>
<tr>
<td>Day - 2</td>
<td></td>
<td></td>
<td>anti-CD45</td>
</tr>
<tr>
<td>Day - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>Stem Cell Transplantation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Haemopoietic stem-cell transplantation with antibody-based minimal intensity conditioning: a phase 1/2 study.

SCID

Percent survival

MIC
RIC
Bu/Cy
days post SCT
Percent survival

Number at risk
MIC 8 8 8 8 8 8 8
RIC 21 15 15 15 15 15 15
Bu/Cy 31 25 24 24 24 24
Refractory HLH

- 29% of patients in HLH 94 died before SCT, 97% with active disease
- Patients with non-active HLH at time of SCT do better 72% vs 58%
 - Trottestam H et al Blood 2011, 118:4577-4584
- Multiple attempts to induce / re-induce remission lead to co-morbidities
- Can you identify bad players early:
 - Diagnosis: Bilirubin >50, ferritin > 2000, CSF pleocytosis > 100
 - 2 weeks into therapy: platelets <40, ferritin > 2000, fever, anaemia
- Approach: ATG / Alemtuzumab / anti-Interferon –γ followed by MIC SCT
Cognitive and Social Outcomes

Jessica Jackson et al manuscript in preparation

<table>
<thead>
<tr>
<th>Measure</th>
<th>Norms</th>
<th>HLH</th>
<th>Comparison with norms</th>
<th>Sibling</th>
<th>Comparison with norms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>t (df)</td>
<td>p-value</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>IQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>100 (15)</td>
<td>86.0 (18.6)</td>
<td>-3.4 (19)</td>
<td>0.003**</td>
<td>99.8 (17.2)</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>100 (15)</td>
<td>81.5 (19.1)</td>
<td>-4.3 (19)</td>
<td>0.001***</td>
<td>100.4 (12.9)</td>
</tr>
<tr>
<td>Full Scale IQ</td>
<td>100 (15)</td>
<td>81.1 (19.8)</td>
<td>-4.3 (19)</td>
<td>0.001***</td>
<td>99.2 (15.4)</td>
</tr>
<tr>
<td>SDQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.4 (5.8)</td>
<td>14.3 (7.5)</td>
<td>3.4 (17)</td>
<td>0.004**</td>
<td>9.3 (6.8)</td>
</tr>
<tr>
<td>Emotional</td>
<td>1.9 (2.0)</td>
<td>3.7 (2.6)</td>
<td>3.0 (17)</td>
<td>0.008**</td>
<td>2.1 (1.7)</td>
</tr>
<tr>
<td>Conduct</td>
<td>1.6 (1.7)</td>
<td>2.5 (1.9)</td>
<td>2.0 (17)</td>
<td>0.063</td>
<td>2.2 (2.1)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>3.5 (2.6)</td>
<td>5.3 (3.6)</td>
<td>2.1 (17)</td>
<td>0.047*</td>
<td>3.2 (2.9)</td>
</tr>
<tr>
<td>Peer r/ships</td>
<td>1.5 (1.7)</td>
<td>2.8 (2.4)</td>
<td>2.2 (17)</td>
<td>0.040*</td>
<td>1.7 (1.6)</td>
</tr>
<tr>
<td>Impact</td>
<td>0.4 (1.1)</td>
<td>2.6 (3.3)</td>
<td>2.9 (17)</td>
<td>0.010**</td>
<td>0.2 (0.4)</td>
</tr>
<tr>
<td>PEDS-QL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>89.1 (12.3)</td>
<td>68.3 (18.1)</td>
<td>-4.3 (13)</td>
<td>0.001***</td>
<td>88.4 (18.6)</td>
</tr>
<tr>
<td>Emotional</td>
<td>82.2 (12.7)</td>
<td>60.0 (23.4)</td>
<td>-2.9 (13)</td>
<td>0.012*</td>
<td>71.4 (22.6)</td>
</tr>
<tr>
<td>Social</td>
<td>78.3 (15.5)</td>
<td>57.9 (20.1)</td>
<td>-5.4 (13)</td>
<td>0.001***</td>
<td>84.5 (17.5)</td>
</tr>
<tr>
<td>School</td>
<td>86.8 (15.4)</td>
<td>58.2 (18.3)</td>
<td>-4.8 (13)</td>
<td>0.001***</td>
<td>85.5 (17.1)</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>81.5 (16.1)</td>
<td>58.7 (15.7)</td>
<td>-5.6 (13)</td>
<td>0.001***</td>
<td>80.3 (16.4)</td>
</tr>
<tr>
<td>Total</td>
<td>84.6 (11.2)</td>
<td>62.1 (13.7)</td>
<td>-6.2 (13)</td>
<td>0.001***</td>
<td>83.3 (16.0)</td>
</tr>
<tr>
<td>Vineland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>100 (15)</td>
<td>80.3 (14.1)</td>
<td>-6.4 (20)</td>
<td>0.001***</td>
<td>-</td>
</tr>
<tr>
<td>Daily living</td>
<td>100 (15)</td>
<td>83.5 (16.5)</td>
<td>-4.6 (20)</td>
<td>0.001***</td>
<td>-</td>
</tr>
<tr>
<td>Socialisation</td>
<td>100 (15)</td>
<td>81.1 (14.8)</td>
<td>-5.8 (20)</td>
<td>0.001***</td>
<td>-</td>
</tr>
</tbody>
</table>

Outcome not affected by age or CNS involvement

? conditioning or donor chimerism
Future

• Newborn screening for SCID
• Next generation sequencing: most PID children in the future will have a genetic diagnosis (200 PID genes)
• Move away from MAC to RIC/MIC
 – anti-c-kit SCID study October 2014
 – ? achieve 0% TRM
• Late effects and long-term chimerism will decide best RIC protocol
Acknowledgements

GOS-BMT
- Persis Amrolia
- Kanchan Rao
- Robert Chiesa
- Olga Nikolajeva
- Juliana Silva
- Stuart Adams
- Netty Hewitt
- Helen Freeman
- Maria Fincxh
- Lindsey Young
- Danielle Pinner
- Rachel Mead
- Nikki Bennett-Rees
- Mary Foo Caballero
- Mary Fanning

UCLH
- Rachel Hough

Frieburgh
- Stephan Ehl

Utrecht
- Jaap Boelens
- Caroline Lindemans

UCSF
- Mort Cowan
- Chris Dvorak

Manchester
- Rob Wynn

Zurich
- Tayfun Guengoer

ANRC
- Aurore Saudemont

GOS-Immunology
- Kimberley Gilmour
- Waseem Qasim
- Cathy Cale
- Bobby Gaspar
- Graham Davies
- Alison Jones
- David Goldblatt
- Adrian Thrasher
- Austen Worth
- Siobhan Burns
- Amel Hassan
- Winnie Ip
- Claire Booth
- Lucinda Brown
- Jinhua Xu-Bayford
- Shelagh McGill
- Helen Braggins
- Clare Malcomson
- Penny Titman

Newcastle
- Andy Gennery
- Mary Slatter
- Andy Cant
- Mario Abinum
- Terry Flood
- Sophie Hambleton

Cincinnati Children’s
- Rebecca Marsh
- Lisa Filipovich
- Michael Jordan